
Contemporary Issues in Exposure Assessment Using 
Biomonitoring

Antonia M. Calafat1

1Centers for Disease Control and Prevention, 4770 Buford Hwy, MS F17, Atlanta, GA 30341, USA

Abstract

In environmental epidemiology, use of biomonitoring (i.e., trace-level measurement of 

environmental chemicals or their metabolites in biospecimens) for exposure assessment has 

increased considerably in past decades. Although exposure biomarkers should reflect a person’s 

exposure to the target chemicals (or their precursors) within a specific timeframe, timing, duration, 

and intensity of exposures are normally unknown and likely vary within the study period. 

Therefore, evaluating exposure beyond a single time point may require collecting more than one 

biospecimen. Of note, collection and sample processing procedures will impact integrity and 

usefulness of biospecimens. All of the above factors are fundamental to properly interpret 

biomonitoring data. We will discuss the relevance of the exposure assessment study protocol 

design to (a) ensure that biomonitoring specimens reflect the intended exposure, (b) consider the 

temporal variability of concentrations of the target biomarkers, and (c) facilitate the evaluation of 

accuracy and comparability of biomonitoring results among studies.
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Introduction

Epidemiology has used three main tools to quantify chemical exposures: history/

questionnaire information; environmental monitoring; and measures of concentrations of the 

chemicals, their metabolites, or adducts in biological specimens (also known as 

biomonitoring) [1]. Analytical chemistry advances and technology breakthroughs allow the 

accurate and precise trace-level quantification in biospecimens of environmental biomarkers 

[2]. As a result, environmental epidemiologists increasingly use biomonitoring 

concentrations to estimate chemical exposures within populations [3]. Nevertheless, using 
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biomonitoring for exposure assessment is not without challenges including, among others, 

the nature of the biomarker (e.g., short half-life) and of the exposures (e.g., constant vs 

episodic) and the adequacy of the sampling process. Therefore, using biomonitoring to 

optimize the exposure assessment in environmental epidemiology studies will require 

information on the temporal variability of concentrations of the target biomarkers, 

particularly for non-persistent compounds, as well as on the timing of collection of the 

biospecimens. Furthermore, because biomonitoring data can be used to inform chemical risk 

assessments [3], evaluating aspects of the study design that can impact accuracy and 

comparability of the biomonitoring results among studies is fundamental.

In this short review, we will provide an overview of factors affecting the design and 

interpretation of biomonitoring studies in environmental epidemiology.

Interpretation of Biomonitoring Data in Environmental Epidemiology

Biomarker Selection

The scientific community’s interest in evaluating exposures to environmental chemicals 

derives, at least in part, from the potential harmful effects to human health for many of these 

compounds [3]. Environmental epidemiology relied traditionally on indirect measures of 

exposure, which included both environmental monitoring and personal exposure history/

questionnaire data, to assess human exposure to such environmental chemicals. In the last 

few decades, however, thanks in part to advances in robotics and analytical chemistry 

techniques, assessment of exposure using biomonitoring or the targeted assessment of 

internal dose (i.e., body burden) from trace-level measures of the parent chemical and/or its 

metabolites in human samples has increased considerably [2].

Interpreting biomonitoring data for environmental epidemiology requires a good 

understanding of the toxicokinetics of the target biomarkers [1]. Environmental chemicals, 

after entering the body via ingestion, inhalation, or dermal contact, may or may not be 

absorbed into the systemic circulation; some chemicals may pass through with no absorption 

or be absorbed and then excreted. Absorption may depend on the route of exposure. For 

example, elemental mercury is toxic primarily through inhalation of mercury vapors, but it is 

only slowly absorbed through the skin, and virtually, no elemental mercury is absorbed 

through the gastrointestinal tract [4]. Absorbed chemicals can then distribute within the body 

and, depending on the chemical, can be metabolized, stored in body deposits, circulated or 

equilibrated with blood concentrations, and ultimately excreted. Any of the body storage or 

excretion compartments or fluids (e.g., fat, bone, blood, urine, bile, feces, exhaled breath) 

can serve potentially as a biomonitoring matrix [1, 2].

For general population studies in environmental epidemiology, urine and blood are the most 

common biomonitoring matrices. In general, persistent compounds (chemicals with 

elimination half-lives of months or years) are commonly measured in blood/blood products, 

while metabolites of non-persistent compounds (chemicals with half-lives of the order of 

minutes to hours) are measured in urine [1, 2]. Measuring blood concentrations of non-

persistent chemicals may be advantageous to differentiate exposures to the chemical itself or 

to its environmental degradates or metabolites, particularly when the latter lack specificity 
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(i.e., can be metabolites of multiple chemicals). For example, benzene in blood is a better 

exposure biomarker than urinary phenol, catechol, hydroquinone or trans, trans-

mucondialdehyde, all non-specific metabolites of benzene [5]. However, in the case of 

benzene, as for many other pervasive chemicals in the environment such as phthalate 

diesters, external contamination may occur at various points both during the preanalytical 

and analytical steps of the biomonitoring process. Contamination would be more prominent 

for the parent compound (the chemical present in the environment) or its environmental 

degradates or human metabolites (e.g., hydrolytic phthalate monoesters) than for other 

metabolites (particularly those that require specific phase I reactions [e.g., P450-mediated 

oxidations] or phase II reactions) such as oxidative phthalate monoesters or glucuronide 

conjugates [6]. Therefore, for non-persistent chemicals, in general, measuring the parent 

compound in blood would require that the analytical method includes fastidious treatment of 

collection materials to minimize external contamination [7, 8] and is both accurate and 

sensitive enough to detect transient ultratrace concentrations [1].

In certain cases, however, even with access to such analytical methods, the fast metabolism 

of the parent compound (e.g., from phthalate diesters to phthalate monoesters), among other 

reasons, can preclude the usefulness of measures of the parent compound as the exposure 

biomarker [6, 9]. Lastly, concentrations of the non-persistent parent chemical in blood are 

often lower than those of its urinary metabolites [10•]. Taken together, the above 

considerations strongly support using urine as the preferred matrix for the quantification of 

many non-persistent chemicals for exposure assessment in environmental epidemiology 

[11].

Variability in Biomarker Concentrations

Other factors impacting the quality and interpretation of biomonitoring data relate to the 

nature of the biomarker (e.g., temporality) and the adequacy of the sampling process. 

Biomarker concentrations in spot (i.e., single, untimed) samples can adequately rank a 

person’s exposure at one given time point, but in environmental epidemiology, exposure 

biomarkers should ideally reflect a person’s exposure to the target chemicals or their 

precursors over a period of interest with relevance to the health outcome being studied [11]. 

Otherwise, variability in biomarker concentrations may result in considerable exposure 

misclassification and bias associations between exposures and health outcomes toward the 

null hypothesis. Therefore, to optimize the study design, environmental epidemiologists 

must rely on information on the temporal variability of concentrations of the target 

biomarkers. For example, the intra-class correlation coefficient (ICC) describes the 

agreement of repeated measures over time within a subject. The ICC, defined as the ratio of 

between-subject variance to total (between- plus within-subject) variance, ranges from 0 (no 

reproducibility) to 1 (perfect reproducibility). For a given exposure scenario, depending on 

the temporal variability of concentrations of the target biomarkers (i.e., ICC), a single 

sample may not be enough to sufficiently characterize a person’s exposure over weeks, 

months, or years.

A single biomarker concentration for persistent chemicals, those with relatively high ICCs, 

may adequately represent exposure over time irrespective of whether the exposure is 
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constant or episodic and of its duration, intensity, or timing [12]. Interestingly, because 

persistent chemical concentrations are relatively stable over time, provided that the 

toxicokinetics of the compounds are known, it is possible to estimate concentrations of the 

biomarkers from known concentrations taken years before assuming no significant 

intervening exposures [13•]. Being able to predict such concentrations may provide a useful 

way to increase sample size when costs and logistics of recruitment follow-up may prevent 

collection of new biospecimens, thus facilitating the exposure and health assessment [13•].

Variability in concentrations is much more pronounced for non-persistent than for persistent 

chemicals because concentrations of non-persistent chemical biomarkers change rapidly 

upon exposure [14, 15•]. Therefore, for non-persistent chemicals, the intensity, duration, and 

recurrence of the exposure and the time passed between exposure and sample collection will 

impact the reproducibility of the biomarker concentrations [14, 15•]. For certain chemicals, 

concentrations derived from a single sample may not be sufficient to quantify exposure 

adequately over time and may require different approaches such as multiple measurements 

or use of composite (i.e., pooled) specimens.

Of interest, when exposure to the target chemical results from use of personal care products, 

inter-individual differences in biomarker concentrations are greatest. By contrast, dietary 

exposures to a given chemical, which may change considerably both within and between 

days, lead to substantial intra-individual variability of the biomarker concentrations [16•, 

17–19, 20•, 21–25]. Therefore, ICCs derived from dietary exposures tend to be lower than 

those for other exposures (e.g., personal care products use), irrespective of the study 

population and assessed time period [26–29, 30•, 31–42, 43•, 44–57]. Yet, acceptable 

variability in biomarker concentrations over time likely exists because background chemical 

exposures arise from recurring lifestyle routines including diet and use of personal care 

products [11, 16•, 17, 19, 20•, 21–23, 25] as long as commercial formulations of the 

chemical-containing products do not change considerably within the study timeframe. 

Therefore, single concentrations obtained from a sufficient number of persons may 

adequately describe the study population’s average concentration [11, 15•] even when 

considerable variability exists at the individual level.

For example, reliability in urinary concentrations of bisphenol A (BPA), a high production 

volume chemical used in the manufacture of many consumer products, is rather poor (i.e., 

relatively low ICCs) [28, 29, 40, 48, 57, 58]. Yet, despite this variability, biomonitoring 

concentrations may identify activities (e.g., consumption of canned soup, handling of 

thermal receipt paper, consumption of water from certain plastic containers) that result in 

considerable increases in urinary concentrations of BPA [59–62]. Similarly, biomonitoring 

data confirm that a person’s use of fragranced products significantly increases urinary 

concentrations of monoethyl phthalate, a metabolite of diethyl phthalate, which is used 

extensively in personal care products [63–68]. As expected for exposures resulting from 

recurrent use of such products, the reproducibility of urinary concentrations of monoethyl 

phthalate, as measured by the ICC [17, 20•, 26, 29, 30•, 42, 43•, 45, 47, 56, 69], is moderate, 

and, in general, considerably higher than for biomarkers of chemicals like BPA or di(2-

ethylhexyl) phthalate (DEHP) for which food consumption is the main exposure source.
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Collection and Storage Protocols Matter

Use of spot urine samples in environmental epidemiology is common because collecting 

spot samples, including first morning voids, is easier than 24-h collections and thus may 

facilitate participants’ recruitment, compliance, and retention. However, as mentioned above, 

spot concentrations for short-lived chemicals can show considerable inter- and intra-

individual temporal variability, particularly for episodic exposures [11, 15•]. Concentrations 

of single 24-h urine collections, on the other hand, accurately reflect daily exposure but, 

much like concentrations of spot samples, cannot represent variability in daily exposures 

over time, at least for non-persistent compounds such as plastic component chemicals 

(phthalates, BPA), personal care product chemicals (e.g., parabens, triclosan), pesticides, and 

polycyclic aromatic hydrocarbons [16•, 17, 19, 20•, 21–23, 25]. The moderate to high 

correlation of biomarker concentrations in spot samples, including first morning voids, with 

those from 24-h composites [16•, 17, 19, 20•, 21–23, 25] suggests that collecting 24-h voids 

may not be advantageous compared to multiple spot collections, at least for exposure 

assessment purposes. Of interest, when collecting multiple spot samples, because sources 

and timing of the exposures vary depending on the target chemical, changing the time of 

collection of spot samples and recording the time of urine collection and time since last void 

may provide the best reflection of aggregate exposure to environmental chemicals.

Sampling must ensure that the biomarker concentrations reflect contact with the chemicals 

or their precursor(s) from a person’s usual exposures over time and not recent spurious 

contact with the target chemicals, such as from medical intervention or from specimen 

contamination [8, 11]. Proper study practices such as the use of blank samples may identify 

potential external contamination during specimen collection (e.g., field or travel blanks) [8] 

or laboratory analysis (e.g., laboratory blanks) [70•] but cannot adequately identify contact 

with the target chemicals shortly before sampling. For example, medical interventions may 

lead to exposure to ubiquitous chemicals such as DEHP and BPA [71–76]. Concentrations of 

these chemicals or their metabolites in specimens collected soon after medical treatment 

would reflect true exposures [11, 77, 78], but because these concentrations would not 

represent typical daily exposures, they would likely be inconsequential for the purposes of 

quantifying the exposures during the exposure or health assessments in environmental 

epidemiology studies.

Unfortunately, for many of the tens of thousands of chemicals commercially used nowadays, 

exposure sources and pathways are yet unknown. Adequate interpretation of biomonitoring 

data would benefit from research to identify all relevant exposure sources and pathways 

particularly for chemicals with widespread commercial and industrial use [8]. In the absence 

of such information, having detailed records pertinent to the sampling and processing of 

biomonitoring specimens, including location and timing of specimen collection, will 

facilitate the interpretation of biomonitoring results. Further, interpretation of biomonitoring 

data in the peer-reviewed literature would benefit from the explicit presentation of these data 

in scientific and medical journals that publish biomonitoring research.

A good understanding of the sampling and processing practices is highly relevant when 

using archived samples for which limited information related to collection and storage may 

exist. In such situations, at least for non-persistent chemicals, evaluating the ratio of 
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conjugated vs non-conjugated (i.e., free) species may provide useful insight as to whether 

external contamination or degradation of the biomonitoring specimen occurred during the 

collection or storage period [8, 57, 79–81]. This approach was applied to the quantification 

of BPA and other phenols in archived samples collected as part of two European programs, 

the German Environmental Specimen Bank (ESB) [79] and the Norwegian Mother and 

Child Cohort Study (MoBa) [57]. BPA is rapidly and almost completely (>90 %) conjugated 

in phase II biotransformation before excretion in urine [82]. Therefore, external 

contamination may be assessed from measuring both concentrations of total (conjugated 

plus free combined) as well as free BPA to identify samples in which the ratio of free/total 

species is out of the expected range [57, 79–81]. Following this approach, investigators 

determined that neither contamination nor degradation of the ESB samples occurred [79]. 

By contrast, the much higher ratio of free/total species compared to normal physiological 

ranges strongly suggests that BPA contaminated the MoBa urine samples, likely from the 

use of a urinary preservative [57, 83]. Similarly, evidence suggested external contamination 

with several parabens from the use of the preservative, but not with other phenols such as the 

antibacterial triclosan. These findings document the usefulness of measuring total and free 

biomarker concentrations to assess external contamination of specimens with ubiquitous 

compounds such as parabens, certain phenols, and phthalates [8, 57, 79–81]. These findings 

also stress the relevance of promoting a close dialog among laboratory and field researchers 

from the onset of the study because use of certain preservatives may result in contamination 

and also interfere with analytic procedures [57, 83].

Use of quality control (QC) materials is an integral component of quality standards for 

laboratory testing [84]. QC materials, including blanks, are analyzed in each analytical batch 

along with study samples to ascertain precision and reproducibility of laboratory results. 

Every batch must meet set QC criteria, or the samples within the batch must be reanalyzed 

[70•, 84, 85]. In addition to these internal laboratory quality standards, biomonitoring 

protocols increasingly include screening of collection materials to minimize contamination 

during sample collection [75, 86]. However, biomonitoring protocols seldom include 

requirements to monitor (1) potential contamination during handling, storage, and shipping 

before analysis (e.g., field blanks) [83]; (2) reproducibility of the sampling (e.g., blind 

duplicates) [87, 88]; or (3) independent checks on laboratory accuracy and precision (e.g., 

blind samples) [57, 89]. Of interest, these requirements can provide useful information to 

ensure reliable laboratory measurements through time in epidemiology studies that may span 

several years. High-purity solvent(s) placed in a sample container and labeled and processed 

as the biological study samples can serve as a field blank. Blind duplicates are duplicate 

study samples, preferably split from the same sample container. Blind (matrix) samples can 

be obtained from commercial sources or collected by field staff and prepared (e.g., mixed 

well), in quantities sufficient to last for the duration of the project; blind samples may be 

pools or individual samples. Like field blanks, both blind duplicates and blind samples must 

be prepared by someone other than the laboratory staff who will perform the analytical 

measurements and processed (e.g., labeled, stored) as the study samples. Appropriate use of 

field blanks, blind duplicates, and blind samples interspersed among the study samples can 

(a) facilitate epidemiologists’ evaluation of the integrity of laboratory results and (b) assist 
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laboratory and field staff in identifying sources of error and to implement corrective 

measures [88, 90].

Comparability of Biomonitoring Data: Standard Reference Materials and External Quality 
Assessment Programs

General population human biomonitoring programs, including existing nation-wide 

initiatives in North America, Europe, and Asia, can provide the most comprehensive 

assessment of populations’ exposure to select environmental chemicals [91–94, 95•, 96–101] 

and also can potentially inform chemical risk assessments [3]. In addition to nation-wide 

general population programs, biomonitoring has also been increasingly used in 

environmental epidemiology for studies of birth cohorts and cohorts of other specific 

population groups.

For all of these initiatives and studies, scientists and policy makers rely on biomonitoring 

exposure information to identify at-risk populations and knowledge gaps and to understand 

the potential impact of chemical exposures on health to support sound policies to limit or 

track exposures. Therefore, comparing biomonitoring data amongst these programs is of 

public health interest. However, because each program relies on its own study design, which 

includes choice of the study population, procurement and type of biospecimens, and 

selection of analytical methods, to ensure scientifically meaningful comparisons, evaluating 

aspects of the biomonitoring programs design that can impact comparability of data is key 

[102]. First, differences in the analytical method accuracy or the degree to which the result 

of a measurement conforms to the correct value may affect the comparability of 

biomonitoring results among programs. Two main tools can be used to check the accuracy of 

the analytical methods: (a) traceability to National Institute of Standards and Technology 

(NIST) standard reference materials (SRM) [103] and (b) participation in external quality 

assessment (EQA) programs [104].

SRMs are certified reference materials issued under NIST trademark that are well 

characterized using state-of-the-art methods for the determination of chemical composition 

and/or physical properties. In the past few decades, NIST, in collaboration with leading 

international laboratories, has developed SRMs in urine, blood, or milk for a range of 

chemical classes including both inorganic and organic chemicals [105, 106•, 107, 108]. For 

these SRMs, certified values are typically based on the combination of results from two or 

more independent methods. Whenever possible, incorporating these SRMs in laboratory QC 

programs can ensure the accuracy, traceability, and comparability of biomonitoring 

measurements among studies. Regrettably, SRMs are only available for a limited number of 

chemical agents and biological matrices. Because accurate and precise quantitative measures 

of environmental chemical biomarkers are at the core of any biomonitoring program, having 

access to a wider range of SRMs in relevant biological matrices would greatly benefit 

biomonitoring research.

EQA, a system for objectively checking a laboratory’s performance using an external agency 

or facility, allows for comparison of a laboratory’s testing to a peer group of laboratories or a 

reference laboratory [104]. Participating in EQA programs helps to assure comparability of 

results from different laboratories and that a laboratory can produce reliable results by the 
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following: (a) allowing comparison of performance and results among different laboratories, 

(b) providing early warning for systematic problems associated with laboratory operations, 

(c) providing objective evidence of testing quality, (d) indicating areas that need 

improvement, and (e) identifying training needs [104].

Biomonitoring laboratories can use EQA programs, such as those administered by the 

Centre de Toxicologie du Québec (CTQ, https://www.inspq.qc.ca/en/ctq/eqas) and the 

University of Erlangen-Nuremberg (http://www.g-equas.de/default.htm), to identify 

laboratory practice problems, thus allowing for appropriate corrective action. For example, 

thanks to their participation in EQA programs, the CTQ and US Centers for Disease Control 

and Prevention (CDC) laboratories identified inaccuracies with commercial phthalate 

metabolite standards used as calibrators [95•, 109]. Both laboratories issued correction 

factors for the affected standards that, when applied to previously acquired measurements, 

corrected for the inaccuracy of the standards to supply accurate and comparable results.

Continuing and expanding EQA programs to include additional compounds would, similar 

to developing other SRMs, strengthen biomonitoring research. Of interest, however, EQA 

assesses only the accuracy of the analytical method and cannot detect all other unrelated 

problems, particularly those pertaining to pre- and post-analysis steps (e.g., external 

contamination, specimen degradation) that could compromise the integrity of the specimen. 

Therefore, other QC checks, such as those described in the previous section, must exist to 

identify these scenarios, thus facilitating the implementation of measures to isolate and track 

such situations and minimize as much as possible their recurrence and impact [8, 70•]. 

Otherwise, even valid (i.e., accurate, precise) analytical measures on compromised 

specimens can lead to erroneous interpretation of biomonitoring results.

Conclusions

The number of epidemiology studies including an exposure assessment biomonitoring 

component continues to increase. Therefore, programs that allow for the evaluation of 

accuracy and comparability of results among studies are critical to interpret biomonitoring 

data for both exposure and risk assessment purposes. Moreover, proper use and 

interpretation of biomonitoring depend in large part on the study objectives which, in turn, 

dictate the study design. Adequate selection of the study population, procurement and type 

of biospecimens, and choice of analytical methods are key to a successful biomonitoring 

initiative. Biomonitoring provides an integrated measure of exposure to chemicals from all 

sources and routes. Therefore, biomarkers should be selected to minimize contamination 

arising from collection, processing, or analysis procedures to best represent usual personal 

exposures and not recent, adventitious, or extraneous exposures. When properly used, 

biomonitoring data can be reliably used to estimate internal doses in environmental 

epidemiology studies.
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